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In this paper, in order to characterize highly oscillating time-frequency patterns of signals,

whose instantaneous frequency (IF) is periodic or non-periodic, a generalized Warblet

transform (GWT) is proposed. By replacing sine function kernel of conventional Warblet

transform with Fourier series function, the GWT is able to generate a time-frequency

representation (TFR) with satisfying energy concentration for such signals. As any

oscillating function can be well approximated by a Fourier series, the GWT is guaranteed

to provide an effective way to achieve accurate IF estimation. In addition, a signal-

dependent iterative procedure for coefficients estimation is developed to enable the GWT

to be applied in practice. Using the Fourier spectrum of the IF, the coefficients of the

Fourier series kernel function of the GWT can be estimated and refined adaptively. The

effectiveness of the proposed method is verified through comparing with other time-

frequency analysis methods on several numerical examples and experimental vibration

signal, which is collected from a rotor test rig undergoing speed-up and slow-down stages.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that frequency modulation (FM) signal conveys information over a carrier wave by varying instantaneous
frequency (IF). The IF is a basic parameter of the time-frequency pattern of mono-component signals [1–3]. According to the
time-frequency nature, FM signals can be categorized into the two classes: linear FM (LFM) signals and nonlinear FM (NLFM)
signals. The LFM signal has linearly time-varying IF and the IF of NLFM signal is a nonlinear function of time. LFM signals are
encountered in wide research areas, i.e., oceanic investigation [4], biomedical application [5], power system [6], and radar [7],
sonar [8], telecommunication [9,10] and so on. NLFM signals are also frequently encountered in radar system [11,12], sonar
[13], oceanic investigation [14], and machine health monitoring [15].

Time-frequency representation (TFR) obtained by time-frequency transform is a powerful tool to effectively characterize the
time-frequency pattern of FM signals [16]. Most researches have focused on the analysis of signals with linearly time-varying IF.
Commonly used time-frequency analysis (TFA) methods [17] include short-time Fourier transform (STFT), Wavelet transform
(WT), and Wigner–Ville distribution (WVD). Since prior knowledge about the signal to be analyzed is not required, these TFA
methods can be regarded as non-parameterized time-frequency transform. Specifically, the STFT [18,19] is a window-depending
Fourier transform. By assuming the signal in the analysis window to be stationary, the local frequency is linearly approximated by
a horizontal line. Thus, the STFT is only suitable to analyze the stationary and quasi-stationary signal with fixed time-frequency
resolution. The WT [20–22] improves the STFT by providing scalable time-frequency resolution, i.e., finer frequency resolution at
lower frequency, and finer time resolution at higher frequency. Despite that, the WT would result in worse time resolution
at lower frequency and worse frequency resolution at higher frequency in the analysis of the signal with highly oscillating IF.
011 Published by Elsevier Ltd. All rights reserved.
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The WVD [23–25] can generate TFR with great energy concentration for LFM signals. Nonetheless, the cross-terms introduced by
the bilinear structure of the WVD would mislead the time-frequency interpretation for the NLFM signal with highly oscillating IF.

Comparing to the non-parameterized TFA methods, parameterized time-frequency transforms, such as the Chirplet
transform (CT) [26–28] and Warblet transform (WBT) [29], require the prior knowledge about signals to determine the
parameter values of transform kernel function. When the kernel function well presents the IF trajectory of the signal, the
parameterized time-frequency transforms will be much more effective in characterizing the time-frequency patterns of
FM signals by providing a TFA with satisfying energy concentration, including the NLFM signals. By introducing an extra
chirp kernel characterized by a chirping rate parameter, the CT is particularly developed to analyze LFM signals. To analyze
signals, whose IFs are not exactly linear function of time, Angrisani and D’Arco [30] introduced a curvature parameter into
the traditional CT, which provides a new degree of freedom for shaping the time-frequency cell. The modified version of
the CT is able to analyze the signal, whose IF can be approximated by a nonlinear function characterized by the chirping
rate and the curvature parameter. Even so, for the signal with highly oscillating IF that cannot be simply described by the
chirping rate and the curvature parameter, the method cannot guarantee an enhancement for the estimation accuracy of
the IF. The WBT adopts a sine kernel function so that it can deal with NLFM signals with sinusoidal-like IF law and provide
well-concentrated TFR for such signals. Angrisani et al. [31] applied the WBT to analyze non-stationary signals for
telecommunication systems. However, although the WBT can present excellent result for the signals with periodically
changing IF law, it is not suitable to analyze the NLFM signals whose IF laws are not periodic.

In this paper, by introducing a frequency rotation operator and a frequency shift operator using Fourier series as kernel
function, a generalized Warblet transform (GWT) is proposed. It is designed to characterize the time-frequency patterns
for signals with arbitrary highly oscillating IF that can be approximated by Fourier series. Moreover, a signal-dependent
iterative procedure is developed based on the spectrum of the objective IF, which can adaptively estimate and refine the
coefficients of the Fourier series kernel functions for the GWT. This procedure enables the GWT to be applied in practice.

In Section 2, a frequency rotation operator and a frequency shift operator are first addressed, which have actually been
used in the conventional CT but none has clearly revealed their existence before, and then the two operators are extended
to the conventional WBT, which yields the GWT. The iterative signal-dependent coefficient estimation procedure for the
GWT is presented in Section 3. In Section 4, the performance of the GWT is verified by comparing with other time-
frequency transform methods on numerical examples and vibration signal collected from a test rig undergoing speed-up
and slow-down stages. The conclusions are drawn in Section 4.

2. Generalized Warblet transform

This section starts with the CT, from which a frequency rotation operator and a frequency shift operator are proposed,
and then these operators are extended to conventional WBT. The principles of the proposed GWT are then introduced.

2.1. Chirplet transform

The CT [26] is an effective method to analyze LFM signals, which is defined as follows:

CTðt0,o,a;sÞ ¼
Z 1
�1

zðtÞCðt,t0,a,sÞexpð�jotÞdt ð1Þ

where z(t) is analytical signal of signal s(t), sðtÞ 2 L2ðRÞ, which is generated by a Hilbert transform [32], H, i.e., z(t)¼s(t)þ
jH[s(t)]. Cðt,t0,a,sÞ is a complex window given as

Cðt,t0,a,sÞ ¼wðsÞðt�t0Þexp �j
a
2
ðt�t0Þ

2
h i

ð2Þ

where t0,a 2 R stand for time and chirping rate, respectively; w 2 L2ðRÞ denotes a window function, which is usually taken
as a Gaussian function expressed as

wsðtÞ ¼
1ffiffiffiffiffiffi
2p
p sexp �

1

2

t

s

� �2
" #

ð3Þ

where s determines the length of the Gaussian window.
According to the definition in Eqs. (1) and (2), the CT can be rewritten as

CTðt0,o,a;sÞ ¼ Aðt0Þ

Z 1
�1

zðtÞwsðt�t0Þexpð�jotÞdt ð4Þ

with

zðtÞ ¼ zðtÞFR
aðtÞF

S
aðt,t0Þ

FR
ðt,aÞ ¼ expð�jat2=2Þ

FS
ðt,t0,bÞ ¼ expðjat0tÞ

Aðt0,aÞ ¼ expð�jt2
0a=2Þ

8>>>>><
>>>>>:

ð5Þ
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in which FR
ðt,aÞ is frequency rotation operator and FS

ðt,t0,aÞ is frequency shift operator. A(t0) is a complex number with
modulus 9Aðt0Þ9¼ 1. In the time-frequency analysis, the modulus of the TFR, i.e., CTðt0,o,a;sÞ

�� ��, which is usually of interests
and meaningful. As indicated in Eqs. (4) and (5), the CT can be decomposed into three operators: (1) frequency rotation
operator; (2) frequency shift operator; (3) STFT operator with the window wsðtÞ. Fig. 1 illustrates the procedure of the CT, in
which the IF law of the objective signal is denoted as IF(t). First, the frequency rotation operator rotates the analytical signal z(t)
by an angle of arctan (�a) in the time-frequency plane. Then the frequency shift operator relocates the frequency component
at t0 by a frequency increment of at0. It is worth noting here that the frequency resolution of the CT depends on the chirping
rate a and the length of the Gaussian window s. For a signal with IF law of o0þl0t, the frequency resolution of the TFR
generated by the CT is s9l0�a9þð1=sÞ and 9CTðt0,o,a;sÞ9 reaches the global maximum at ðo,aÞ ¼ ðo0,l0Þ.

To illustrate the capability of the CT in dealing with the LFM signal, a signal consisting of two chirping frequency
components is considered

sðtÞ ¼ sin½2pð5þ2:5tÞt�þsin½2pð10þ2:5tÞt� ð6Þ

whose IF is 5þ5t (Hz) and 10þ5t (Hz). The sampling frequency is 200 Hz, the window length is 512 and the chirping rate
is a¼5 (Hz/s). The TFRs generated by the STFT and CT are shown in Fig. 2.

In the TFR generated by the STFT shown in Fig. 2(a), the two IF trajectories cannot be distinguished for the poor time
and frequency resolutions. Clearly, it is much easier for the TFR generated by the CT as shown in Fig. 2(b) to separate the
two chirping frequency components. However, the CT is not suitable to analyze NLFM signals because of the linear kernel.

2.2. Warblet transform

The WBT is specifically designed to analyze the FM signal with periodic IF law. By applying the frequency rotation
operator and the frequency shift operator with a sine kernel function, the WBT is presented as follows:

WTðt0,w,bm,fm;sÞ ¼
Z 1
�1

zðtÞwsðt�t0Þexpð�jotÞdt ð7Þ
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Fig. 1. The illustration of CT (solid line: the IF law of the object chirp signal; dash line: after frequency rotation; dash dot line: after frequency shift).

Fig. 2. The TFRs generated by (a) STFT and (b) CT (a¼2.5) for the signal given by Eq. (6).
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with

zðtÞ ¼ zðtÞFR
ðtÞFS

ðt,t0Þ

FR
ðt,bm,fmÞ ¼ exp �j bm

fm
sinð2pfmtÞ

h i
FS
ðt,t0,bm,fmÞ ¼ exp½j2pbm cosð2pfmt0Þt�

8>>><
>>>:

ð8Þ

in which f, bm and fm are carrier frequency, modulation amplitude and modulation frequency, respectively. In essence, the
WBT applies the STFT to the objective signal after rotating and shifting operation. The signal is (1) rotated by subtracting

the IF of FR
ðt,bm,fmÞ, i.e., r¼ bm cosð2pfmtÞ (Hz), from the IF of the objective signal in the time-frequency plane, and (2)

relocated by adding the frequency of FS
ðt,t0,bm,fmÞ at time t0, i.e., g¼ bm cosð2pfmt0Þ (Hz) in the time-frequency plane, and

(3) processed by the STFT. The key steps of the WBT are illustrated in Fig. 3, where DIFðt;sÞ denotes the frequency range of

IF ðtÞ�r in the Gaussian window. The frequency resolution is determined by DIFðt;sÞ and the bandwidth of Gaussian

window 1/s. When the sine kernel well matches the IF of interest, DIFðt;sÞ will equal zero all over the time, and the
frequency resolution of the WBT will be minimized to be 1/s.

To demonstrate the performance of the WBT in the analysis of the signal with periodic IF law, below FM signal is
considered

sðtÞ ¼ sinð20ptþ48sinðtÞÞ ð9Þ

whose IF law is 10þð24cosðtÞ=pÞ (Hz). The CT and the STFT are considered for comparison purpose. The sampling
frequency is 100 Hz, the chirp rate is a¼16/p and the length of the window is 512. The parameters of the WBT are
bm¼24/p and fm¼1/2p. The TFRs generated by STFT, CT and WBT are shown in Fig. 4.

Clearly, neither STFT nor CT is able to achieve accurate estimation for the objective IF due to the fixed time-frequency
resolution or the linear kernel function. On the contrary, the WBT shows remarkable capability of capturing the time-
frequency characteristics of the signal as illustrated in Fig. 4(c), because the IF is well approximated by the sine kernel
function. However, the WBT is not qualified to analyze signals with highly oscillating IF that cannot be approximated by
single sine function.
2.3. Generalized Warblet transform

In order to analyze the signal with arbitrary highly oscillating IF which is periodic or non-periodic, the generalized
Warblet transform is proposed to characterize the time-frequency patterns of such signals. As any oscillating function can
be well approximated by a Fourier series, the GWT assures the accurate IF estimation for the signal by replacing the sine
kernel of the frequency rotation operator and the frequency shift operator of the WBT with Fourier series as follows:

GWTðt0,a,b,f ,o;sÞ ¼
Z 1
�1

zðtÞwsðt�t0Þexpð�jotÞdt ð10Þ
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Fig. 3. The illustration of WBT (solid line: the IF law of the object chirp signal; dash line: after frequency rotation; dash dot line: after frequency shift).



Fig. 4. The TFRs generated by (a) STFT, (b) CT (a¼16/p) and (c) WBT (bm ¼�24=p,fm ¼ 1=2p) for the signal given by Eq. (9).
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with
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in which m is total number of the sine or cosine functions fa1,a2,:::,amg and fb1,b2,:::,bmg are Fourier coefficients. ff1,f2,:::,fmg

is the corresponding frequencies. FR
ðt,a,b,f Þ and FS

ðt,t0,a,b,f Þ are the frequency rotation and frequency shift operators,

respectively. First, the frequency rotation operator rotates the analytical signal by subtracting the IF of FR
ðt,a,b,f Þ, i.e.,

r¼ ð�
Pm

i ¼ 1 ai sin2pfitþ
Pm

i ¼ 1 bi cos2pfitÞ (Hz) from the IF of the signal, and then, the frequency shift operator shifts the

frequency component at time t0 by adding the frequency of FS
ðt,t0,a,b,f Þ, i.e., g¼ ð�

Pm
i ¼ 1 ai sin2pfit0þ

Pm
i ¼ 1 bi cos2pfit0Þ

(Hz), and then, the STFT with window ws is applied.
The procedure of the GWT is illustrated in Fig. 5. When the Fourier series well matches the objective IF, the frequency

range of IFðtÞ�r, i.e., DIFðt;sÞ, will be zero in the Gaussian window, and the frequency resolution will reach the mini-
mum, i.e., 1/s. It is noticed that when fa1,a2,:::,amg ¼ f0,0,:::,0g1�m and fb1,b2,:::,bmg ¼ f0,0,:::,0g1�m, the GWT degenerates to
the STFT. When m¼1, the GWT degenerates to the conventional WBT, thus the Warblet transform is the special case of
the GWT.

3. Coefficient estimation method for GWT

It was addressed that the properly determined coefficients can make the Fourier series kernel of the GWT well match the IF
of the signal. With the proper Fourier series kernel, the GWT is able to characterize the time-frequency pattern of signals, whose
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Fig. 5. The illustration of WBT (solid line: the IF law of the object chirp signal; dash line: after frequency rotation; dash dot line: after frequency shift).
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IF can be approximated by the Fourier series. Since the prior knowledge about the signal is usually unknown in real applications,
it is desired to determine the coefficients of the Fourier series kernel effectively and adaptively based on the objective signal.
Fourier transform is a generalization of the complex Fourier series and the Fourier spectrum of a function is related to its Fourier
coefficients. Therefore, a coefficients estimation method for the GWT is proposed using the Fourier spectrum of the objective IF.
The relationship between the Fourier coefficients and the Fourier transform of the IF is given as follows:

Fðno0Þ ¼
X1
t ¼ 0

IFðtÞexpð�jno0tÞ ð12Þ

Fðno0Þ ¼

1
2 ðanþ jbnÞ for no0
1
2 a0 for n¼ 0
1
2 ðan�jbnÞ for n40

8><
>: ð13Þ

where o0 denotes fundamental frequency. n is an integer. F(no0) denotes the Fourier transform of IF(t); an and bn are the Fourier
coefficients.

The proposed coefficient estimation method aims to refine and estimate the coefficients of the Fourier series kernel of the
GWT based on the signal under consideration. First, with the Fourier series kernel characteristic coefficients of fa1,a2, :::,amg ¼

f0,0,:::,0g1�m and fb1,b2,:::,bmg ¼ f0,0,:::,0g1�m, the GWT generates an TFR for the signal. Then, the position of the locally
maximum energy in the TFR is extracted as estimated IF, i.e.,

IF
�

ðtÞ ¼ argmax
o
½9GWTðt0,a,b,f ,o;sÞ9� ð14Þ

Third, the Fourier spectrum is obtained through the Fourier transform of the estimated IF, IF
�

ðtÞ, and the Fourier
coefficients can be calculated based on the spectrum according to Eqs. (12) and (13). With the obtained coefficients, the
Fourier series kernel of the GWT is a better approximation of the objective IF so that the GWT can generate an improved
TFR with better energy concentration. This procedure is iterated to refine the coefficients until no more evident change
between two successive estimated IFs. The termination condition is expressed as follows:

z¼ mean

Z
9IFiþ1

�

ðtÞ�IFi

�

ðtÞ9

9IFi

�

ðtÞ9
dt

2
4

3
5od ð15Þ

where IFi

�

ðtÞ denotes the estimated IF in the ith iteration and d is a pre-defined threshold. The details of the coefficient
estimation method for the GWT is given as follows.

3.1. The coefficient estimation method for the GWT
Initialization step:
Let fa1 a2 :::amg ¼ f00:::0g1�m and fb1b2 :::bmg ¼ f00:::0g1�m, set d, the window size, non-zero ff1 f2 :::fmg, and the

maximum iterationkmax

While kokmaxand zod
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1. Generating the TFR for the analytical signal zðtÞ by the GWT with fa1 a2 :::amg, fb1b2 :::bmg, and ff1 f2 :::fmg.
2. Estimating IFk

�
ðtÞ from the TFR generated in Step 1 according to Eq. (14).

3. Applying fast Fourier transform to IFk

�
ðtÞ and estimating fa1 a2 :::amg, fb1b2 :::bmg, and ff1 f2 :::fmg according to Eqs. (12)

and (13).

4. Updating fa1 a2 :::amg, fb1b2 :::bmg, and ff1 f2 :::fmg.
5. Calculating the terminal condition z according to Eq. (15) and k’kþ1
. 6.
eren

. 7.
eren
End

In order to demonstrate the proposed coefficient estimation method for the GWT, a NLFM signal is considered as an
example

sðtÞ ¼ sin 40pt�200pcos
t

10
�6pcost

� �
ð0oto60sÞ ð16Þ

whose IF law is

oðtÞ ¼ 20þ10sin
t

10
þ3sint ðHzÞ ð17Þ

A Gaussian noise is artificially added to the signal. The window size is set to be 512 and the threshold d is 0.1%. Before
reaching the termination condition, 4 iterations have been run. The obtained TFR as well as the estimated IF in each
iteration are shown in Figs. 6–9. In the TFR illustrated in Fig. 6(a), it can be seen that only high energies are distributed
at local extreme of the IF trajectory. In Fig. 6(b), a Fourier series is used to approximate the estimated IF and the
coefficients of the Fourier series are estimated based on the spectrum of the estimated IF. Then, in the TFR generated by the
GWT with the updated coefficients shown in Fig. 7(a), the energy is much more concentrated in the vicinity of the IF
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(a) The TFR and (b) the estimated IF in the 1st iteration (blue line: the estimated IF; green line: the approximation of IF). (For interpretation of the

ces to color in this figure legend, the reader is referred to the web version of this article.)
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(a) The TFR and (b) the estimated IF in the 2nd iteration (blue line: the estimated IF; green line: the approximation of IF). (For interpretation of the

ces to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. (a) The TFR and (b) the estimated IF in the 3rd iteration (blue line: the estimated IF; green line: the approximation of IF). (For interpretation of the
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Fig. 9. (a) The TFR and (b) the estimated IF in the 4th iteration (blue line: the estimated IF; green line: the approximation of IF). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
The value of termination condition.

Iteration number 2 3 4

z (%) 0.8686 0.1557 0.006

Table 2
Errors of the estimated IF comparing to true IF.

Iteration number 1 2 3 4

Error (%) 8.5839 3.1176 2.4940 2.2850
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trajectory. In Figs. 8 and 9, it is expected that the TFR generated in the 3th and 4th iterations are improved in terms of
energy concentration and more accurate IF estimations are obtained. In order to quantify the accuracy of the estimated IF,
an error measurement between the estimated IF trajectory and the true IF trajectory is defined as follows:

error¼mean

Z
½IF
�

iðtÞ�IFðtÞ�2dt ð18Þ

The termination conditions and the errors are listed in Tables 1 and 2, respectively. It can be seen that the estimated
IF becomes closer to the true IF of the signal, which testifies that the proposed coefficient estimation method is able to
refine the coefficients of the Fourier series kernel to match the objective IF adaptively. It is worth noting that the number of
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the sine and cosine functions of the Fourier series, m, can be adjusted to reach different approximation accuracy, i.e., fewer
sine and cosine functions of the Fourier series results in smoother but less accurate approximation of the IF.

4. Validation

4.1. Numerical examples

In order to validate the performance of the proposed method, STFT, WT and WVD are considered for comparison
purpose. In the tests on two numerical signals, the sampling frequency is set to be 100 Hz and window length is 1024.

The first signal is considered as

sðtÞ ¼ sin 20ptþ2:5pt2þ
2

9
pt3�

1

80
pt4

� �
ð0oto18sÞ ð19Þ

whose IF law is

fimðtÞ ¼ 10þ2:5tþðt2=3Þ�ðt3=40Þ ðHzÞ ð20Þ

The results are shown in Fig. 10. The coefficients of the Fourier series kernel of the GWT are obtained by the proposed
coefficient estimation method. Only few coefficients are listed as follows due to the limit of space,

fa1; a2; a3; a4; a5g ¼ ½9:33; 2:01; 1:02; 0:68; 0:51�

fb1;b2;b3;b4;b5g ¼ ½11:21; 2:78; 1:21; 0:67; 0:41�

ff1; f2; f3; f4; f5g ¼ ½0:0555;0:1110;0:1666;0:2221;0:2776�

8><
>: ð21Þ

The TFR generated by the STFT illustrated in Fig. 10(a) shows poor energy concentration in the time-varying proportion
of the IF due to the constant time-frequency resolution. In the TFR generated by the WT illustrated in Fig. 10(b), the energy
spreads over the high frequency range, i.e., around 45 Hz, for the coarser frequency resolution provided by the WT.
The WVD can generate a TFR with the best energy concentration for the LFM signal. However, in the TFR generated by the
Fig. 10. The TFR of the 1st numerical example generated by (a) the STFT, (b) the WT, (c) the WVD and (d) the GWT.
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WVD shown in Fig. 10(c), the bilinear structure of the WVD introduces the cross-terms at the high frequency range. On the
other hand, it can be seen that the TFR generated by the GWT has the energy extremely concentrated along the IF
trajectory and outperforms the other three methods in characterizing the true time-frequency pattern of the objective
signal.

The second example considers a signal, whose IF law is given by

oðtÞ ¼ 10þ
24

p sinðtÞþ
1

3
sinð3tÞþ

1

5
sinð5tÞþ

1

7
sinð7tÞ

� �
ðHzÞ ð22Þ

i.e.,

sðtÞ ¼ sin 20pt�2p� 24

p
cosðtÞþ

1

9
cosð3tÞþ

1

25
cosð5tÞþ

1

49
cosð7tÞ

� �� 	
ð0rtr15sÞ ð23Þ

The TFRs generated by the STFT, WT, WVD and the GWT are shown in Fig. 11. It can be seen in Fig. 11(a) that the IF
trajectory characterized by the STFT loses the details at flat areas of 4 and 16 Hz. Meanwhile, the TFR generated by the STFT
shows extraordinary energy leakage when the IF changes rapidly with time, i.e., rigid zone between 4 and 16 Hz. Thus, the
STFT with the fixed time-frequency resolution is not adequate to analyze non-stationary signals. In the TFR obtained by the
WT shown in Fig. 11(b), the energies are scattered at higher frequency due to the coarser frequency resolution, and the IF
trajectory is blurred at lower frequency for the coarser time resolution. In the TFR generated by the WVD shown in
Fig. 11(c), the superior frequency components of the cross-terms make the accurate identification of the objective IF
impossible. On the contrary, the promising result obtained by the GWT is shown in Fig. 11(d). It can be seen that the TFR
has excellent energy concentration along the IF trajectory and characterizes the true time-frequency pattern of the signal.
Fig. 11. The TFR of the 2nd numerical example generated by (a) the STFT, (b) the WT, (c) the WVD and (d) the GWT.
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The coefficients of the Fourier series kernel of the GWT for the signal are listed as follows:

fa1; a2; a3; a4g ¼�
24
p 1; 1

3 ;
1
5 ;

1
7


 �
fb1;b2;b3;b4g ¼ ½0;0;0;0�
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1
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3
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5
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7

2p

 �

8><
>: ð24Þ

4.2. Transient vibration signal undergoing speed-up and slow-down stages

As rotating machine is increasingly employed in complex continuous operation, condition monitoring is an effective
way to increase the productivity and reliability, as well as facilitate the prognostics and maintenance for the rotating
machine in manufacturing process. Speed-up and slow-down processing is often related to the change of the machine
speeds and loads, which contains valuable information of the machine health. Thus, it is desirable to monitor the vibration
behavior of the rotating machine during the transient processes. The vibration signal of the machine during these
processes is typically transient along with frequency modulation. The time-frequency analysis of such vibration signals has
received broad attentions [15,33,34].

To validate the proposed method, a set of the vibration signal collected from a rotor test rig undergoing speed-up and
slow-down stages is used. The test rig is shown in Fig. 12. A set of the collected vibration signal is shown in Fig. 13. The
sampling frequency is set to be 100 Hz and the window size is 512. The termination condition in Eq. (15) is applied and the
threshold is d¼0.1%. Three iterations have been run before reaching the termination condition. The TFRs and the estimated
instantaneous speed obtained by the STFT and the SCT are shown in Figs. 14 and 15, respectively. Comparing to the STFT,
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Fig. 12. The rotor test rig.
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Fig. 13. A set of vibration signal.
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Fig. 14. (a) The TFR and (b) instantaneous speed estimation obtained by STFT.
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Fig. 15. (a) The TFR and (b) instantaneous speed estimation obtained by GWT.
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the TFR generated by the GWT has much better energy concentration along the fundamental frequency component of the
rotor system, which is nonlinearly varying with time. Therefore, the GWT can guarantee accurate estimation of the
instantaneous frequency for the rotor system.

It should be noticed that the proposed GWT focuses on mono-component signals, in another words, the GWT is
currently not suitable to analyze the multi-component signal with multiple frequency components that need to be
approximated with different Fourier series. This is a common problem for the parameterized time-frequency transforms.
The authors are now working on extending the GWT to analyze the multi-component signal from a post-processing point
of view, which will be presented in the future.
5. Conclusion

In this paper, a generalized Warblet transform (GWT) is proposed to characterize the time-frequency pattern of the
signal with arbitrary highly oscillating IF that can be approximated by Fourier series. Unlike the conventional time-
frequency transforms, the GWT is able to provide fine frequency resolution and avoid interference of cross-terms for
non-stationary signals whose IF can be periodic or non-periodic. Moreover, the developed signal-dependent coefficient
estimation method practically facilitates the GWT to obtain a TFR with excellent energy concentration and achieve an
accurate IF estimation. The effectiveness of the proposed method is verified by the analysis of both artificial examples and
experimental signal. The results show that the GWT outperforms STFT, WT and WVD in providing the TFR with excellent
energy concentration and the accurate IF estimation for the signal with arbitrary highly oscillating IF, which can be
periodic or non-periodic. The future work directs to enable the proposed method to analyze multi-component signals in
real applications.
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